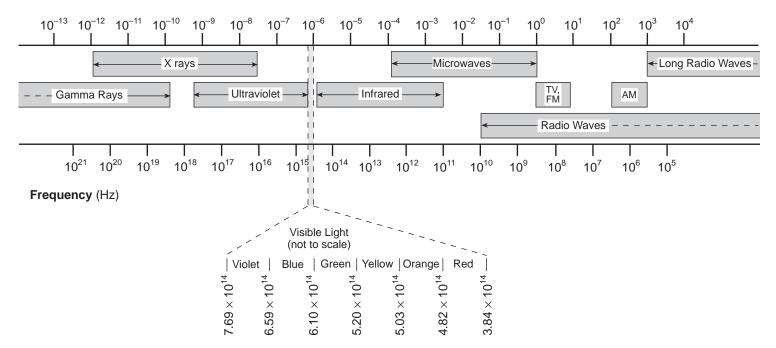
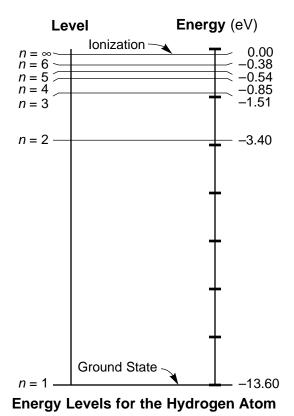
2002 Edition Reference Tables for Physical Setting/Physics

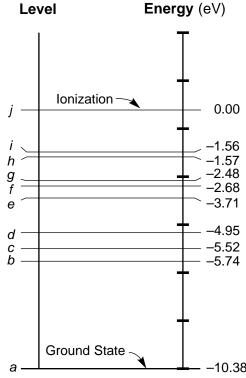

List of Physical Constants				
Name	Symbol	Value		
Universal gravitational constant	G	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$		
Acceleration due to gravity	g	9.81 m/s ²		
Speed of light in a vacuum	С	3.00×10^8 m/s		
Speed of sound in air at STP		3.31×10^2 m/s		
Mass of Earth		$5.98 \times 10^{24} \text{ kg}$		
Mass of the Moon		$7.35 \times 10^{22} \text{ kg}$		
Mean radius of Earth		$6.37 \times 10^6 \text{ m}$		
Mean radius of the Moon		$1.74 \times 10^6 \text{ m}$		
Mean distance—Earth to the Moon		$3.84 \times 10^8 \text{ m}$		
Mean distance—Earth to the Sun		$1.50 \times 10^{11} \text{ m}$		
Electrostatic constant	k	$8.99\times10^9~\text{N}\text{-m}^2/\text{C}^2$		
1 elementary charge	e	$1.60 \times 10^{-19} \text{ C}$		
1 coulomb (C)		6.25×10^{18} elementary charges		
1 electronvolt (eV)		$1.60 \times 10^{-19} \text{ J}$		
Planck's constant	h	$6.63 \times 10^{-34} \text{ J} \cdot \text{s}$		
1 universal mass unit (u)		$9.31 \times 10^2 \text{ MeV}$		
Rest mass of the electron	m _e	$9.11 \times 10^{-31} \text{ kg}$		
Rest mass of the proton	m _p	$1.67 \times 10^{-27} \text{ kg}$		
Rest mass of the neutron	m _n	$1.67 \times 10^{-27} \text{ kg}$		

Prefixes for Powers of 10			
Prefix	Symbol	Notation	
tera	T	10^{12}	
giga	G	10 ⁹	
mega	M	10^{6}	
kilo	k	10^{3}	
deci	d	10^{-1}	
centi	С	10^{-2}	
milli	m	10^{-3}	
micro	μ	10^{-6}	
nano	n	10^{-9}	
pico	p	10^{-12}	

Approximate Coefficients of Friction			
Rubber on concrete (dry)	Kinetic 0.68	Static 0.90	
Rubber on concrete (wet)	0.58		
Rubber on asphalt (dry)	0.67	0.85	
Rubber on asphalt (wet)	0.53		
Rubber on ice	0.15		
Waxed ski on snow	0.05	0.14	
Wood on wood	0.30	0.42	
Steel on steel	0.57	0.74	
Copper on steel	0.36	0.53	
Teflon on Teflon	0.04		

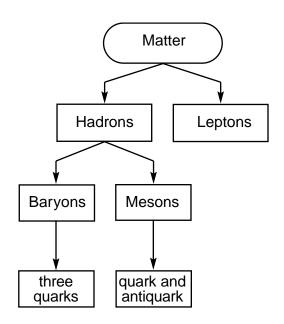
The Electromagnetic Spectrum





Absolute Indices of Refraction (f = 5.09×10^{14} Hz)		
Air	1.00	
Corn oil	1.47	
Diamond	2.42	
Ethyl alcohol	1.36	
Glass, crown	1.52	
Glass, flint	1.66	
Glycerol	1.47	
Lucite	1.50	
Quartz, fused	1.46	
Sodium chloride	1.54	
Water	1.33	
Zircon	1.92	

Energy Level Diagrams



A Few Energy Levels for the Mercury Atom

Classification of Matter

Particles of the Standard Model

Quarks

Name Symbol Charge

charm
c
$$+\frac{2}{3}e$$

top
t
$$+\frac{2}{3}e$$

$$\begin{array}{c} down \\ d \\ -\frac{1}{3}e \end{array}$$

strange s
$$-\frac{1}{3}$$
 e

bottom
$$b$$

$$-\frac{1}{3} e$$

Leptons

electron e -1e

electron neutrino V_e 0

Note: For each particle there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$$F_e = \frac{kq_1q_2}{r^2}$$

$$E = \frac{F_e}{q}$$

$$V = \frac{W}{q}$$

$$I=\,\frac{\Delta q}{t}$$

$$R = \frac{V}{I}$$

$$R=\,\frac{\rho L}{A}$$

$$P = VI = I^2R = \frac{V^2}{R}$$

$$W = Pt = VIt = I^2Rt = \frac{V^2t}{R}$$

Series Circuits

$$I = I_1 = I_2 = I_3 = \dots$$

$$V = V_1 + V_2 + V_3 + \dots$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots$$

A = cross-sectional area

$$F_e$$
 = electrostatic force

$$I = current$$

$$k = electrostatic constant$$

$$L = length of conductor$$

$$q = charge$$

$$R = resistance$$

R_{eq} = equivalent resistance

$$r = distance between centers$$

$$\Delta$$
 = change

$$\rho$$
 = resistivity

Parallel Circuits

$$I = I_1 + I_2 + I_3 + \dots$$

$$V = V_1 = V_2 = V_3 = \dots$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Circuit Symbols

$$-(\vee)$$
 voltmeter

$$-$$
(A)— ammeter

Resistivities at 20°C		
Material	Resistivity (Ω•m)	
Aluminum	2.82×10^{-8}	
Copper	1.72×10^{-8}	
Gold	2.44×10^{-8}	
Nichrome	$150. \times 10^{-8}$	
Silver	1.59×10^{-8}	
Tungsten	5.60×10^{-8}	

Waves and Optics

$$v = f \lambda$$

$$T = \frac{1}{f}$$

$$\theta_i = \theta_r$$

$$n = \frac{c}{v}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{n_2}{n_1}\,=\,\frac{v_1}{v_2}\,=\,\frac{\lambda_1}{\lambda_2}$$

$$f = frequency$$

$$n = absolute index of refraction$$

$$T = period$$

$$v = velocity$$

$$\lambda$$
 = wavelength

$$\theta = angle$$

$$\theta_i$$
 = incident angle

$$\theta_r$$
 = reflected angle

Modern Physics

$$E_{photon} = hf = \frac{hc}{\lambda}$$

$$E_{photon} = E_i - E_f$$

$$E = mc^2$$

$$c = speed of light in a vacuum$$

$$E = energy$$

$$f = frequency$$

$$m = mass$$

$$\lambda$$
 = wavelength

Geometry and Trigonometry

Rectangle

$$A = bh$$

Triangle

$$A = \frac{1}{2}bh$$

Circle

$$A=\pi r^2$$

$$C = 2\pi r$$

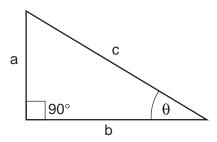
A = area

b = base

C = circumference

h = height

r = radius


Right Triangle

$$c^2 = a^2 + b^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

Mechanics

$$\overline{\mathbf{v}} = \frac{\mathbf{d}}{\mathbf{t}}$$

$$a = \frac{\Delta v}{t}$$

$$v_f = v_i + at$$

$$d = v_i t + \frac{1}{2} a t^2$$

$$v_f^2 = v_i^2 + 2ad$$

$$A_{V} = A \sin \theta$$

$$A_{\mathbf{v}} = A \cos \theta$$

$$a = \frac{F_{net}}{m}$$

$$F_f = \mu F_N$$

$$F_g = \frac{Gm_1m_2}{r^2}$$

$$g = \frac{F_g}{m}$$

$$p = mv$$

 $p_{before} = p_{after}$

$$J=Ft=\Delta p\,$$

$$F_s = kx$$

$$PE_S = \frac{1}{2}kx^2$$

$$F_c = ma_c$$

$$a_c = \frac{v^2}{r}$$

$$\Delta PE = mg\Delta h$$

$$KE = \frac{1}{2} mv^2$$

$$W = Fd = \Delta E_{\hbox{\scriptsize T}}$$

$$E_T = PE + KE + Q$$

$$P = \frac{W}{t} = \frac{Fd}{t} = F \overline{v}$$

a = acceleration

 a_c = centripetal acceleration

A = any vector quantity

d = displacement/distance

 E_T = total energy

F = force

 F_c = centripetal force

 F_f = force of friction

 F_g = weight/force due to gravity

 F_N = normal force

 F_{net} = net force

 F_S = force on a spring

g = acceleration due to gravity or gravitational field strength

G = universal gravitational constant

h = height

J = impulse

k = spring constant

KE = kinetic energy

m = mass

p = momentum

P = power

PE = potential energy

 PE_S = potential energy stored in a spring

Q = internal energy

r = radius/distance between centers

t = time interval

v = velocity/speed

 $\overline{\mathbf{v}}$ = average velocity/average speed

W = work

x = change in spring length from the equilibrium position

 Δ = change

 θ = angle

 μ = coefficient of friction